By Roger Porkess

The highly-acclaimed MEI sequence of textual content books, aiding OCR's MEI dependent arithmetic specification, has been up-to-date to compare the necessities of the recent standards, for first instructing in 2004.

**Read Online or Download A2 Pure Mathematics (C3 and C4) PDF**

**Best schools & teaching books**

**Chemistry Made Clear - GCSE Edition **

Chemistry Made transparent is favourite as a center GCSE Chemistry textual content, or because the Chemistry element of a balanced technology direction. scholars may be capable of finding issues out speedy and simply one of the simplified motives. * every one double-page unfold offers with a special subject and comprises questions * examination point questions on the finish of every bankruptcy * Line drawings and images spotlight the real-life purposes of chemistry Chemistry Made transparent is usually steered through college of Cambridge overseas Examinations for IGCSE Chemistry.

**Creative Teaching: Getting it Right (Practical Teaching Guides) **

Such a lot lecturers settle for that studying is most excellent whilst it's relaxing, yet they're given little direct recommendation approximately the right way to in achieving the inventive and motivating study rooms that educationalists allure for. This interesting e-book creates a coherent photograph of ways academics could make studying more uncomplicated and extra stress-free for his or her students, together with task rules, self-evaluation workouts and adaptable motion plans for making improvements to either school room and whole-school ethos.

**Theoretical Mechanics for Sixth Forms. In Two Volumes**

Theoretical Mechanics for 6th varieties, quantity 2, moment (SI) version makes a speciality of the strategies, ideas, methodologies, and methods enthusiastic about the theoretical mechanics for 6th varieties. The e-book first elaborates at the movement of a inflexible physique a couple of mounted axis, unfastened movement of a inflexible physique in dimensions, and movement with variable acceleration.

- Comparative and International Research In Education
- Toddler and Parent Interaction: The Organisation of Gaze, Pointing and Vocalisation
- Diversifying the Teaching Force in Transnational Contexts: Critical Perspectives
- Elearning: The Key Concepts (Routledge Key Guides)
- Intellectual compromise: the bottom line

**Additional resources for A2 Pure Mathematics (C3 and C4)**

**Example text**

13 The general quadratic curve You are now able to relate any quadratic curve to that of y = x 2. 5 (i) (ii) (iii) Write the equation y = 1 + 4x – x 2 in the form y = a[(x + p)2 + q]. Show how the graph of y = 1 + 4x – x 2 can be obtained from the graph of y = x 2 by a succession of transformations, and list the transformations in the order in which they are applied. Sketch the graph. SOLUTION (i) 32 / a[(x + p)2 + q] If 1 + 4x – x 2 then –x 2 + 4x + 1 / ax 2 + 2apx + a(p 2 + q) Comparing coefficients of x 2: a = –1.

The diagram shows a sketch of the graph of y = f(x), where f(x) = 6x – x 2. Use this graph to sketch (i) (ii) (iii) y y = f(x – 2) y = –12 f(x) y = 2f(x – 1) (3, 9) y = f(x) indicating clearly where these graphs cross the x axis and the co-ordinates of the highest point. 4 O 6 x The diagram shows the graph of y = f(x). y (1, 1) 1 y = f(x) 0 1 2 x Sketch the graph of each of these functions. (i) (iii) (v) y = f(2x) y = 2f(x – 1) x y=f ––1 2 ( ) (iv) y = f(x + 2) y = 3f(x) (vi) y = f(3x + 1) (ii) 29 5 C3 3 Starting with the curve y = cos x, show how transformations can be used to sketch these curves.

The diagram shows a sketch of the graph of y = f(x), where f(x) = 6x – x 2. Use this graph to sketch (i) (ii) (iii) y y = f(x – 2) y = –12 f(x) y = 2f(x – 1) (3, 9) y = f(x) indicating clearly where these graphs cross the x axis and the co-ordinates of the highest point. 4 O 6 x The diagram shows the graph of y = f(x). y (1, 1) 1 y = f(x) 0 1 2 x Sketch the graph of each of these functions. (i) (iii) (v) y = f(2x) y = 2f(x – 1) x y=f ––1 2 ( ) (iv) y = f(x + 2) y = 3f(x) (vi) y = f(3x + 1) (ii) 29 5 C3 3 Starting with the curve y = cos x, show how transformations can be used to sketch these curves.